WYKŁAD WYDZIAŁOWY

w ramach seminarium

ARYTMETYCZNA GEOMETRIA ALGEBRAICZNA

(organizatorzy: Grzegorz Banaszak, Piotr Krasoń)

Czwartek 16 listopada 2017, godz. 16:00, sala 210

Wydział Matematyczno-Fizyczny, Uniwersytetu Szczecińskiego

ul. Wielkopolska 15, 70-451 Szczecin

Prof. Wilhelm Zink

Humboldt Universität Berlin

Local Constants for Galois Representations -Some Explicit Results

Ernst-Wilhelm Zink, joint work with Sazzad Ali Biswas

Streszczenie: Given a representation

$$\rho: Gal(K|F) \to GL_n(C) \tag{1}$$

of a Galois group of **number fields**, one may form the **augmented** Artin *L*-series $\Lambda(\chi_{\rho}, s)$ which is a meromorphic function of a complex variable s depending only on the character χ_{ρ} of that representation. As a classical result we have the functional equation

$$\Lambda(\chi_{\rho}, 1-s) = W(\chi_{\rho}) \cdot \Lambda(\overline{\chi_{\rho}}, s)$$
(2)

where $W(\chi_{\rho})$ is a complex constant of absolute value 1, the **Artin root number**. (See for instance: An Introduction to the Langlands Program, p.81). If $\rho = \chi_{\rho}$ = χ is 1-dimensional, in his derivation of the functional equation for Hecke *L*-series, **J.Tate** found a canonical decomposition of $W(\chi)$ into a product over all places ν of *F*:

$$W(\chi) = \prod_{\nu} W_{\nu}(\chi) \tag{3}$$

where the factors $W_{\nu}(\chi) = \text{local root numbers}$ depend only on the restriction of χ to the decomposition group $G_{\nu} = Gal(K_w|F_{\nu})$ which comes as the Galois group of an **extension of local fields**.

Langlands (1970) noticed that also the higher-dimensional root numbers $W(\chi_{\rho})$ of (2) should have a decomposition into local factors $W_{\nu}(\chi_{\rho})$. The existence of these local root numbers has been proved by Langlands himself (in a unpublished preprint) and by Deligne, using global methods.

For a completely local existence proof one has to use a Brauer map b_G : $R_+(G) \to R(G), [H, \phi] \to \operatorname{Ind}_H^G(\phi)$, which realizes virtual representations of a (pro)finite group G in terms of 1-dimensional characters for subgroups H and to describe $\operatorname{Ker}(b_G)$ in terms of generating relations. Then it has to be verified that Tate's local root numbers $W_{\nu}(\chi)$ for 1-dimensional characters respect these generating relations.

In the talk we derive some explicit formulas for the local root numbers $W_{\nu}(\chi_{\rho})$ if ρ is a Heisenberg representation and (following a paper of H.Koch) think on the role these formulas could play in a local existence proof.